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along resistive 

A simple theory of  current and potential distributions along resistive electrodes is re-examined and 
generalized for non-linearized Tafel behavior. A model of  a passivating electrode is discussed and the 
generalized theory extended to derive expressions for the current and potential profile i along a 
partially passivated electrode. The relevant expressions permit a predictive analysis of  the feasibility 
of  using the electrochemical passivation method for etch-stop control in fabrication of  thin, single 
crystal silicon structures produced by anisotropic deep etching. 

I. Introduction 

Current and potential distributions in electrochemical 
cells have been of interest in a number of applications 
including electrolytic machining, batteries under high 
power drains, high temperature batteries or gas dif- 
fusion electrodes. Recently, the problem of potential 
distribution along resistive semiconductor electrodes 
arose in connection with the fabrication of miniature 
sensor devices [1]. These devices often embody thin 
single crystal silicon structures produced by aniso- 
tropic 'deep' etching. The etch stop can be affected by 
a number of methods of which electrochemical passi- 
vation at the desired depth seems particularly suitable 
when electronic devices must be incorporated into the 
remaining semiconductor wafer. The feasibility of this 
type of etch-depth control depends on the size of the 
electronic components and on the silicon properties. 
An analysis which would predict the electrochemical 
response of the semiconductor to the etching con- 
ditions and define the final geometry requires a know- 
ledge of the potential and current distribution along 
the resistive semiconductor electrode. For this purpose 
we have re-examined and generalized the simple linear 
theory for non-passivating electrodes [2] and extended 
it to the passivating case. 

2. Non-passivating electrode 

2.1. The model 

Consider a flat electrode of specific resistivity 0, length 
L, width w and thickness t (cf. Fig. 1). The electrode 
is fully immersed in an electrolyte, polarized against a 
counterelectrode of infinite conductivity and potentio- 
stated at an applied potential, VL at the point y : L. 

Due to the ohmic drop in the electrode, the potential 
decreases from the applied value, VL, to V0 at the tip 
of the electrode; the potential increment at a point y is 
given by 

V/ =- (cSV/cSy)>, = I:9/wt (I) 
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Fig. 1. Schematic diagram of the model electrode. 

where/v is the current collected between points y = 0 
and y = y. 

It is assumed that: (1) no ohmic drop exists between 
the reference and test electrodes; (2) current density, 
iy, is uniform along the z axis. The current density 
which represents the current increment in the electrode 
length @ can be written as: 

iy ~- ]';/W. (2) 

2.2. Exponential  rate equation 

It is assumed that the rate of the electrode reaction 
obeys the Tafel equation: 

iy = io exp(bVy), (3) 

where iy is the current density at a point y, determined 
by the local overpotential, Vy; io is the exchange current 
density; b =- o~F/RT; ~ is the transfer coefficient. Both 
current density and overpotential are taken as positive 
in all cases. 

2.2.1. Current and current density profiles. From 
Equations 2 and 3 

Iy = wi o exp(bVy) (3a) 

The current distribution can be found by differentiation 
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of Equation 3a to yield: 

I"  = I ' b V "  (4) 

From Equations 1 and 4 

F' = A I I '  (5) 

where 

A = bo/wt  (6) 

Integration of Equation 5 yields* 

I '  = AIZ/2 + Cz (7) 

Using the boundary conditions Ic = IT (where IT is 
the measured total current) or I0 = 0, the integration 
constant in Equation (6) becomes, respectively 

C 1 = I L - -  AI~/2  =- Wio exp(bVc) - AI~/2  (8) 

o r  

Cl = I~ = Wio exp(bV0) (9) 

For the given electrode and electrode reaction the 
value of Cl depends only on the applied potential. It 
can be obtained for each VL from the measured value 
of IT and from a polarization curve determined in a 
separate experiment carried out in the same electrolyte 
at a thin layer of the same electrode material backed 
by a conductive metal. The latter measurement supplies 
not only values of I{, but also that of the Tafel slope, 
1/b, necessary for calculation of A. Equations 8 and 9 
give V0 as a function of the measurable quantities: 
applied potential Vc and total current, IT. 

The integrated form of Equation 7 depends on the 
sign of G-  It follows from Equation 9 that C~ > 0 
since, by definition, I '  =- 6I/6y > 0. Upon integration 
Equation 7 yields: 

x /~ /ACj  arc tan ( I ~  = y + C~ (10) 

Using the boundary condition I 0 = 0 in Equation 10 
yields C2 = 0. Thus, Equation 10 can be rewritten as: 

I, = ( ~ t a n ( y  A ~ - ~  ( l l )  

Also, 

IT = ( ~  t a n ( L ~  (12) 

For reduced variables ~ = Iy/I7 and 35 -~ y / L ,  

[y = t a n ( ~ F ) / t a n F  (13) 

where F - ~ / 2 .  
The values of C~ and IT vary with the applied poten- 

tial; however, both can be determined from measure- 
ment (see above) to yield the current distribution, ~. 

* The differential Equation 5 is solved by defining I '  ~ n, differ- 
entiating n with respect to 1 and expressing it as follows: 

~n/~l =- [~(~z/~y)/~y] . (6y/ax) = r'/n, 

from which 

A n I  = nSn/51  (5a) 

Dividing by n (which is by definition always > 0) and integrating 
Equation 5a results in 

n =-- I '  = A12 + C L 
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Fig. 2. Current profiles along a resistive electrode for A = 
105Acre-t, io = 10-6Acm 2 and b = 20V-I:  [, V L ~ 0.5V; 
2, V L = 0.375V; 3, V L = 0.250V; 4, V L = 0.125V. 

They can also be numerically calculated a priori* 
from the polarization curve using Equations 8 and 12. 

A family of current profiles, ~,  calculated for the 
reduced variable, #, is shown in Fig. 2. For values 
of ~ ( = - F )  lower than ~0.5 (i.e. when 
tan(F) ~ F), the current profile (Equation 13) is 
nearly linear with tolerance better than 10%. As F 
increases from 0.5 to rr/2 t, the current profile departs 
from linearity in the fashion exemplified by curves in 
Fig. 2. In these examples the increase ofFwas  effected 
by increasing the values of the applied potential, Vc, 
while the product of geometric parameters, resistivity 
and Tafel slope, as well as the exchange current density 
were kept constant. 

The current density distribution, obtainable from 
Equation 2 and the differential of Equation 11, is 
given by: 

iy = C , / w c o s 2 ( y F )  (14) 
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Fig. 3. Potential profiles along a resistive electrode for numerical 
values as in Fig. 2. 

* Programs for computations necessary to obtain numerical sol- 
utions to all expressions in this paper are available at request from 
the authors. 
"~ The necessity of limiting computations to the region bounded by 
0 and n /2  arises from the use of the Tafel Equation 3 rather than the 
Butler Volmer-type expression, which would permit the currents 
and overpotentials to become negative. 



POTENTIAL AND CURRENT DISTRIBUTIONS ALONG RESISTIVE ELECTRODES 471 

2.2.2. Potential profile. From Equations 1 and 11: 

f~L 6V = ( O / W t ) ~ - d - ~  l~ t a n ( ~ F ) @  (15) 

from which, upon integration 

VL - Vy = 2/b In (cos (35F)/cos F)  (16) 

The potential drop over the entire electrode length is 
given by: 

VL -- V0 = - ( 2 / b ) l n  cos(F).  (17) 

A family of  numerically computed potential profiles 
along resistive electrodes is shown in Fig. 3 for F 
values corresponding to those used to compute Fig. 2. 

2.3. Linear approximation 

Under low overpotential conditions, when the Tafel 
equation can be linearized, I'  is given by: 

I" - iw = iow(1 + bV)  (t8) 

Differentiation of  Equation 18 yields: 

I" = {iowb}aV/ay (19) 

From Equations 1 and 19 

I" = k2 I (20) 

where 

k 2 =_ iobO/t (20a) 

Upon integration Equation 20 yields 

Iy = DL exp(ky) + D2 e x p ( - k y )  (21) 

Using boundary conditions I0 = 0 and IL = IT the 
current profile is found as 

]y = I T sinh (ky)/sinh (kL), (22) 

the current density profile is given by 

i v = Ix kcosh (ky)/w sinh (kL) (23) 

and the potential profile obtained by integration of  
Equation 1 using Equation 22 becomes: 

VL -- Vy = Ivo[cosh (kL) -- cosh (ky)]/ 

kwt[sinh(kL)] (24) 

All calculations in this section, as well as in Section 
3.2, were made in terms of  actual variables, since rewrit- 
ing them in reduced form is trivial and unnecessary. 

3. Passivating electrodes 

When the value of the applied potential, VL, exceeds 
that of  the passivating potential, Vp, a part of  the 
electrode will passivate. In order to calculate the 
length of  the passivated part as a function of the 
applied overpotential, consider a model which differs 
from that described in Fig. 1, in that the upper part of  
the electrode between y = L and yp is passivated (of. 
Fig. 4). 

Equations derived in Section 2.2 apply in the region 
y = 0 to yv, with suitably changed boundary con- 
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x 

Fig. 4. Schematic diagram of  a partially passivated model electrode. 

ditions, i.e.: 

and 

Ip = wip, (25) 

/p = Iv, ( 2 6 )  

where ip is the passivating current density. The passi- 
vating current density and passivation potential Vp are 
found from the polarization curve obtained in a 
separate experiment (cf. Section 2.2.1). 

The potential drop within the passivated part .of the 
electrode is given by 

VL -- Vp = IT(L - yp)o~/wt. (27) 

3.1. Exponential rate equation 

Expression 12, previously derived for the total current, 
contains a constant C~ defined by Equation 8. For the 
present case, C~ must be replaced by 

C = wio exp(bVp) - AI2/2. (8a) 

Rewriting Equation 12 in the form 

IT = ( ~ t a n ( y p F ) ,  (lZa) 

and inserting Equation 12a into Equation 27 one 
obtains 

VL - Vp = (x/-J-C/A)tan(gpF)(1 - yp)R (28) 

where R is the electrode resistance given by oL/wt. 
The transcendental Equation 28 defines the reduced 

value of  the electrode length (l - Yp), which becomes 
passivated by the applied potential VL. The equation 
can be easily solved numerically*. 

Note that Equation 28 has a maximum, since at 
Yv = 1 and at3~p = 0 the left hand side of Equation 28 
becomes 0, while the intermediate values between 
these points are finite and positive. A few potential 
profiles calculated for various values of the elec'crode 
resistance (other parameters being kept constant) are 
shown in Fig. 5. With decreasing electrode resistance, 
the maxima increase until they reach the vahte of 
Yp . . . .  ~ 0.5 under limiting conditions described in 
Section 3.2. 

* The simplest method of  solution and the corresponding program 
are available from the authors. 
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Fig. 5. Graphical representation of Equation 28 for b = 20 V I 
i o = 10 6Acm 2, ip = 5 x 10-3Acm-2; curves 1 and 2, lower 
abscissa; curve 3, upper abscissa: l, A = 10SAcra t (R = 5000f~); 
2, A = 104Acre -t (R = 500f~); 3, A = 100Acm -t (R = 5f~). 

The physical origin of  the maxima on potential 
profiles exemplified in Fig. 5 can be understood, as 
follows. Starting with an unpassivated electrode and 
applying a potential higher than the passivating value 
will result in a portion of the electrode near )5 = 1 
(y  = L) becoming passivated. With the increase of  VL 
the length of the passivated portion will increase until 
the applied potential reaches the value VL . . . .  which 
passivates the length ( 1 - ) S p  . . . .  ). Any further 
increment, ~5 V, of  the applied potential will cause an 
additional increment of  passive layer length which will 
result in a reduced ohmic drop (VL - V o) in the passi- 
vated part. This, in turn, will cause the potential at the 
boundary between passivating and non-passivating 
portions to exceed the value of Vp. The argument can 
be applied to any point below pp . . . .  down to 39 = 0. 
Thus, any increment of  applied potential above V L . . . .  
will result in the passivation of the entire electrode. 
The parts of  lines in Fig. 5 below maxima have no 
physical counterpart,  since, ideally, an infinitesimally 
small increment of  applied potential, VL, above the 
VL . . . .  value results in total insulation of the entire 
electrode by the passivating layer. The value of  the 
applied potential sufficient for the passivation of the 
entire electrode can be (most conveniently) obtained 
numerically f rom Equation 28. 

3.2. Linear approximation 

Under low overpotential conditions the current profile 

within the region bounded by y = 0 and yv is given for 
non-passivating electrodes by Equation 22. This, 
rewritten for the passivating electrode model (cf. 
Fig. 4) becomes: 

Iy = I T sinh (ky)/sinh (kyp) (22a) 

Differentiation of Equation 22a yields: 

Iy = ITkcosh(ky) /s inh(kyp)  (29) 

At y = yp, I~ = wi v, Iv = I t ,  and thus 

IT = [wip tanh (kyp)]/k (30) 

The potential drop along the passivated part  of  the 
electrode, (L - yp)  is given by Equation 27. From 
Equations 27 and 30: 

V L - V p  = ( i p ~ / k t ) ( L -  yp)[tanh(kyp)] (31) 

Equation 31 defines yp in terms of known parameters,  
with k values given by Equation 20a. 

Again, the function has a maximum as yp decreases 
from L to 0. The value of yp for this maximum can be 
found by equating the first derivative of  Equation 31 
to zero, which yields 

k(L - yp . . . .  ) = 0.5sinh(2kyp . . . .  ) (32) 

For  kyp < 0.5, sinh(2kyp) ~ 2 k y p  and 

Yp . . . .  ,-~ 0.5L (33) 

i.e. under these conditions, the function has a maximum 
close to L/2 and any potential increment over the 
value of VL which passivates the half-length is suf- 
ficient to passivate the entire electrode. 

Also, for kyp < 0.5, tanh(kyp) ~ kyp and Equation 
31 can be rewritten as 

VL . . . .  -- Vp = (ipQ/t)(L2/4) (34) 

The experimental verification of the validity of  this 
simplified model of  current and potential distribution 
along a resistive passivating electrode has been 
described in a separate publication [1]. Expressions 
presently derived can be used to define conditions 
which allow electrochemical passivation to effect etch- 
stop control during anisotropic deep etching of silicon, 
as shown in Ref. [1]. 
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